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. . 1. Introduction 8~ Summa- 

The question is: “Will we break the windows?“. The answer, in short, is no. 

The total energy lost by a single proton incident normal to a thin window is approximately: 

where AZ is the window thickness and X/az is evaluated at the incident energy. The energy lost by 

a heavy charged projectile results primarily from ionization of the target atoms. For ultra-relativistic 
protons incident on a composite target of partial densities pn, electronic charges Zn, and mass 

numbers An, aE/az isl: 

with the ionization energy In-16 ZnO.9 eV and D = 0.3070 MeV-cm2/gm. 

The transverse proton density can be approximately characterized by the bi-Gaussian distribution: 

p(x,y;t) = N . e-x2’20X . e 
2 -y2/202 

2Kbxby 
y 42(t) 

with p normalized to N protons/pulse, and Q(t) describes the temporal evolution of the density. 

In the absence of dispersion, the half-widths of the beam in the transverse planes are related to the 
momentum py, normalized (95%) emittances E, and betatron amplitudes px,y by: 

and by = 
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Furthermore, if the vacuum window is located such that OX = by = 6, cylindrical symmetry can be 

invoked to simplify the proton distribution on the window to: 

p(r;t) = s.e-r2’2a2 * Q(t) 

Ignoring the small increase in beam size due to multiple scattering, the energy deposited at some 

point (r,cp,z) is simply proportional to the beam density at that point. The energy deposited is: 

Generalizing results obtained in subsequent sections to describe asymmetric density distributions 

poses merely a technical complication; it does not qualitatively alter any physics issues. 

3. Du of Heat in the Vacuum Window; 

Ignoring radiative heat loss from the window (which in fact is the dominant process at high 
temperatures, & a fl), the temperature distribution evolves according to the diffusion equation: 

Q+T) aT = 6E : 1 -. 
at pep pep 

where cp is the specific heat, K the thermal conductivity, and p the density of the window material. 

Assuming, further, that thermal conductivity K is independent of location, and ignoring the small 

variation in temperature across the thickness of the window, the diffusion equation in cylindrical 

coordinates reduces to: 

With the approximation that K and cp are also taken to be independent of temperature, the diffusion 

equation has a simple analytic solution. The symmetry of the distribution recommends that this 

solution be obtained via Bessel transforms. Transforms of T(r,t) and its Laplacian are generated as: 

T(a, t) = jo?lr. r. J,(ar) . (T(r, t) -To) and 2. -a2r(a, t) = j2t-e r. J,(ar) . v2(T(r,t) - To) 

where To is the temperature distribution at time t=O (assumed constant), and also the asymptotic 

r+w distribution T(r,t) for all times. 
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The energy deposition density transforms according to: 

I N aE 
mdr.r.J,(W).(jE(r,(P,z;t) =z.z.e 

-&2/2 
0 

* Q(t) 

The second-order partial differential diffusion equation is thereby transformed into the first-order 

differential equation in time: 

From the convolution properties of Laplace transforms, the generic solution for z(a,t) is obtained: 

ct2K , 

‘(w) 
N aE 

a202 t -- 
=-.-.e -2. 

27tpcp aZ 
&’ e PCp’f 

I * * Q(t - t’) 
0 

The spatial temperature distribution is generated from the corresponding inverse Bessel transform: 

T(r, t) - To = [? a - a. J,(ar) . ~(a, t) 

3 T(r, t) = To + 

A physically realistic model of the heating process is one in which the temporal distribution J;z is 
approximated by a &function every z seconds, representing an impulse of N protons incident on 

the window every cycle. The evolution of temperature with time in this case is solved to be: 

T&r,0 = To + 
N 

2XPCp 

aE -. 
aZ 

-r2/202 l+ 

rle L 1 

---$-$f- jT) 

P 

c 
j=O 

t 

l+$.(t- jr) 

1 

where z is the cycle time, l-l is the total number of pulses since time zero, and the time t lies in the 

interval llz I t < (rl+l)z. 
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Every z seconds an impulse of N protons produces an instantaneous temperature boost AT, which 

subsequently diffuses with time. This change AT each cycle is: 

. N 
A’TW = ~7) = 2npcpb2 

aE -r2/2a2 .-.e aZ 

The preceding treatment provides the most realistic analytic description of beam heating, and is the 

only justifiable approach if either the instantaneous temperature rise is ‘comparable’ to the melting 

temperature of the window material, or if the cycle time z is ‘short’ relative to the rate of diffusion. 

Apart from these extremes, however, a model in which the a-function approximation to Q is 

replaced by its time-average is more readily interpretable, yet still contains all the essential physics. 

For a continuous wave of fi = N / z protons/second the temperature distribution becomes: 

A 

TCW(r,t)=T,+x.E. 
4XK aZ 1L El 

r2 

202(1 + 2Kt / pcpo2) 

where El is the exponential integral function: El(x) s I,mda . $. 

This description of the spatial variation of temperature with time is not particularly illuminating. At 

the hottest point in the window, however, the inverse Bessel transform simplifies considerably 

since Jo(ar)rl at t-=0. The temperature here is found to grow logarithmically with time: 

Tcw(W) = To 

3. Maximum Temuerature Growth for Constant Cp and K 

In the Main Injector complex the most intense beam heating of vacuum windows occurs in the 

NuMI line, where 3x1013 120 GeV/c protons are resonantly extracted in -msec pulses with a cycle 

time of 1.9 seconds. The extracted beam is smallest at the target, with a 1.33 mm half-width2. 

Appropriate thermal parameters3 are tabulated below for various window materials. Since the 

instantaneous maximum temperature rise AT ~10% of the melting point for all materials 

considered, the continuous proton wave approximation is an acceptable model of the heating 

process. The maximum temperature growths corresponding to these conditions are depicted in the 

accompanying graph. 

4 
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MAXIMUM TEMPERATURE DUE TO CW PROTONS 
(No Radiative Heat Loss) 
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4, Summarv & Discussiox 

For a Gaussian-distributed proton beam incident normal to a window surface, maximum 

temperature was shown to grow logarithmically with time when only diffusive heat losses are 

considered. This is a qualitatively different result than the& growth rate predicted for the same 

beam incident at some small angle to the surface6. In this case the material would be expected to 

reach melting point in just a few minutes. 

. . 5. conclusions. 

In the absence of radiative energy losses then, yes, the calculations claim that eventually the 

windows will melt. However, since the time-scale for this to happen is on the order of 1012 years, 

whereas the average accelerator’s lifespan is somewhat less than 102 years, this problem can safely 

be left to future generations. 

6 
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ADDendix I. Sw3ic Heats of Metallic Elements & Allov~7 

SPECIFIC HEAT OF METALLIC ELEMENTS 
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For temperatures from =lOOK up to the melting point, the specific heat of a metallic entitiy exhibits 

a nearly linear variation with temperature. The data from [6] have been tit using the form: 

C, =a+p.(T-293) 

The coefficients 01 and p are tabulated below, and the corresponding linear fits are compared with 

data in the associated graph. 

II II a I I3 II 

(J4wW (J/g&2) 
Al 0.862 5.841 x 10-4 
Be 1.896 15.878 x 1O-4 
Re 0.141 0.175 x 10-4 
Ti 0.516 3.146 x 10-4 

AISI 3 16 0.450 2.334 x 10-4 
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Dendix II. Thermal Conductivitv of Metallic Elements & Allov$ 

RECOMMENDED THERMAL CONDUCTIVITY VALUES FOR 
METALLIC ELEMENTS 
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AD-pendix III. Emittance of Metallic Elements & Alloys9 
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